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A new dynamic iterative algorithm code for retrieving macroscopic multilayer

structure parameters (the layer thickness and complex refraction index for each

layer, the surface roughness and the interface roughness between the layers)

from specular scattering angular scan data is proposed. The use of conventional

direct methods, particularly the well known Newton algorithm and gradient-

direction-type algorithm operating dynamically to minimize the error functional

in a least-squares fashion, is explored. Such an approach works well and seems

to be effective in solving the inverse problem in the high-resolution X-ray

reflectometry (HRXR) method. In order to demonstrate some features of the

proposed iterative algorithm, numerical calculations for retrieving three-layer

structure parameters are carried out using simulated HRXR angular scan data.

The calculations indicate clearly that the dynamic iterative algorithm is

convergent and capable of yielding the true solution. It is important that the

performance coefficient for successful iterative cycles for the absolute

minimization of the HRXR error functional is quite high even if the initial

values of the search parameters are chosen rather far from the true values. It is

particularly noteworthy that the relative number of successful iterative cycles is

of the order of 90–40% when only moderately accurate initial parameter values,

varying by �10–40% from the true values, are presumed.

1. Introduction

A classical problem in multilayer structure (MLS) physics is

the determination of the macroscopic MLS parameters,

particularly the thickness, the complex refraction index of

each layer, the surface roughness and the interface roughness,

with the required accuracy. Such MLS parameters are of

interest in applied physics. At present, very few direct methods

aimed at determining MLS parameters are self-consistent and

provide an unambiguous solution without using prior extra

information. Indeed, while methods such as surface X-ray

diffraction, absorption X-ray spectroscopy and reflection

X-ray fluorescence spectroscopy all work well, each suffers

physical limitations since none are sensitive to all the MLS

parameters.

Over the last 20 years there has been substantial success

using the high-resolution X-ray reflectometry (HRXR) tech-

nique coupled appropriately with theoretical model assump-

tions (see, e.g., Cowley & Ryan, 1987; Sinha et al., 1988; Holy et

al., 1999; Asadchikov et al., 1999; Bushuev & Sutyrin, 2000;

Bushuev et al., 2002; Lomov et al., 2005; Sutyrin & Prokhorov,

2006; Baake et al., 2006; Bridou et al., 2006; Lemoine et al.,

2006; Hodroj et al., 2006).

At present, the most promising method for solving the MLS

problem is to decode the one-dimensional HRXR scan data

jR
ðexÞ
0 ð�Þj

2 that result from grazing X-ray specular scattering by

an MLS (see Fig. 1, where � is the grazing angle of the incident

X-ray plane-wave radiation). The fundamental theoretical

model of grazing X-ray specular scattering by an MLS was

developed by Parratt (1954) and is based on sequential Fresnel

reflections by each plane layer of the MLS. In a further step,

all the partial Fresnel transmission and reflection coefficients

are modified by the relevant Debye–Waller transmission term

f
ðtÞ
n�1;n and Debye–Waller reflection term f

ðrÞ
n�1;n for the interface

between the (n � 1)th and nth layers (Nevot & Croce, 1980).

Together they describe the influence of surface and interface

roughness on the X-ray specular scattering. This theoretical

model has been fruitful in retrieving MLS parameters using

the HRXR method in a number of works (Bushuev & Sutyrin,

2000; Bushuev et al., 2002; Sutyrin & Prokhorov, 2006).

There are many diverse iterative methods for solving

inverse physical problems, among which one can point out the

methods based on the well known Newton and gradient-

direction-type algorithms (see, e.g., Press et al., 1992). The

Levenberg–Marquardt algorithm (Eadie et al., 1971; Gill et al.,

1981; see also Sutyrin & Prokhorov, 2006) is of great interest in



that it represents the direct fusion of the Newton algorithm

and a gradient-direction-type algorithm to optimize the

iterative procedure itself. Nevertheless, although diverse

iterative numerical methods work more or less well and are

frequently used, their application to the determination of MLS

parameters has not been explored in any detail and needs to

be developed further (Sutyrin & Prokhorov, 2006; see also

Golberg, 1989). There is virtue in iterative methods that are

based upon the minimization of the HRXR error functional

F{P} as a function of the parameters {P} in a least-square

fashion. It is noteworthy that the random initial MLS para-

meters, {P(start)}, needed to launch the minimization procedure

of F{P} have to be close to the true parameters, {P(true)}. This is

necessary so as to make the iterative minimization procedure

of F{P} convergent. From the mathematical and physical

viewpoints, the main issue in minimizing the HRXR error

functional F{P} is to overcome these limitations on the initial

MLS parameters.

In this paper, the concept of the Levenberg–Marquardt

method is pushed one step further, and it is applied to the

retrieval of true MLS parameters using one-dimensional

HRXR angular scan data jR
ðexÞ
0 ð�Þj

2. A prerequisite for solving

the problem is to elaborate an appropriate iterative algorithm

that achieves the absolute minimization of the HRXR error

functional F{P} (for reference, the absolute minimum F{P(true)}

= 0) even if the random initial MLS parameter values are

chosen rather far away from the true values. The new iterative

algorithm has at its core Newton and gradient-direction-type

algorithms operating dynamically. The algorithm is convergent

and is able to yield the true solution {P(true)} without imposing

any hard limitations on the random initial MLS parameters

{P(start)}.

For reference, it should be mentioned that choosing the

X-ray wavelength � in the range 0.1–1 nm enables one to

detect surface roughness and/or interface roughness in the

observed HRXR angular scan data jR
ðexÞ
0 ð�Þj

2.

In this paper, we are dealing with the true MLS solution

using simulated HRXR angular scan jR
ðexÞ
0 ð�Þj

2 and somewhat

arbitrary initial MLS parameters, {P(start)}, for minimizing the

HRXR error functional F{P}. In place of the known Newton

algorithm code and gradient-direction-type algorithms we will

use a dynamic iterative algorithm code based on a synthesis of

both the Newton and gradient-direction-type algorithms

operating dynamically. It appears that no such algorithm for

MLS parameter determination has been reported previously.

The iterative algorithm code proposed has been tested on a

three-layer structure model based on modified Parratt rela-

tionships. The MLS parameters of interest are retrieved using

simulated HRXR scan data jR
ðexÞ
0 ð�Þj

2. It is noteworthy that

the dynamic iterative algorithm code clearly indicates a good

fit for determining the true MLS parameters. The three-layer

structure parameter fitting is controlled by the performance

criterion of the dynamic iterative algorithm to achieve the

absolute minimum of the HRXR error functional F{P(true)}.

2. Theoretical background. The modified Parratt
recurrent relationships for an MLS

Before proceeding further, it is important to clarify the

mathematical formalism describing a specular component of

the grazing X-ray scattering by an MLS. The derivation of the

modified Parratt recurrent relationships will be sketched (cf.

Nevot & Croce, 1980; Bushuev & Sutyrin, 2000; Sutyrin &

Prokhorov, 2006). They govern the HRXR reflectivity process

by defining sequentially the coefficient R0(�) via the appro-

priate reflectivity coefficients {Rn(�)} (the integer number n

goes from 1 up to N, where N is the total number of layers

including the semi-infinite substrate; see Fig. 2).

As shown in Parratt’s work (Parratt, 1954), in the case of an

ideally planar (id) MLS the recurrent relationships take the

form

R
ðidÞ
n�1 ¼

r
ð0Þ
n�1;n þ ð�r

ð0Þ
n�1;nr

ð0Þ
n;n�1 þ t

ð0Þ
n�1;nt

ð0Þ
n;n�1ÞR

ðidÞ
n gn

1þ r
ð0Þ
n�1;nR

ðidÞ
n gn

;

ðn ¼ 1; 2; . . . ;NÞ: ð1Þ

Here r
ð0Þ
n�1;n is the Fresnel reflection coefficient for the incident

X-ray plane wave exp[ik(n�1)
�r] propagating within the

(n � 1)th layer medium (note that r
ð0Þ
n;n�1 ¼ �r

ð0Þ
n�1;n),
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Figure 1
The geometry of the HRXR method. TF is the X-ray source, S is the MLS
sample, D is the detector position and � is the grazing incident angle (the
scale is exaggerated).

Figure 2
Schematic of an MLS: T(n) and �(n) are the thickness and electric
susceptibility of the nth layer, �2

n�1;n is the mean-square roughness of the
(n � 1, n) interface.



r
ð0Þ
n�1;n ¼

kðn�1Þ
z � kðnÞz

k
ðn�1Þ
z þ k

ðnÞ
z

ð2Þ

and the exponential factor gn describes the phase shift due to

the plane-wave propagation through the nth layer and is given

by

gn ¼ expð2ikðnÞz TðnÞÞ: ð3Þ

Here the normal component of the plane wave kðnÞz within the

nth layer medium is defined by

kðnÞz ¼ ð2�=�Þðsin2 � þ �ðnÞÞ1=2; ð4Þ

where � is the wavelength of the incident X-ray plane wave,

T(n) is the nth layer thickness and �ðnÞ is the zeroth Fourier

component of the complex electric susceptibility �(n)(r) of the

nth layer medium (�ð0Þ ¼ 0 for a vacuum).

Accordingly, the Fresnel transmission coefficient t
ð0Þ
n�1;n can

be introduced as t
ð0Þ
n�1;n ¼ 1þ r

ð0Þ
n�1;n,

t
ð0Þ
n�1;n ¼

2kðn�1Þ
z

k
ðn�1Þ
z þ k

ðnÞ
z

; ð5Þ

and the following identity is obtained:

�r
ð0Þ
n�1;nr

ð0Þ
n;n�1 þ t

ð0Þ
n�1;nt

ð0Þ
n;n�1 � 1:

By using the basic recurrent relationships [equation (1)]

together with equations (2)–(5), and taking into account

R
ðidÞ
N ¼ 0 and R

ðidÞ
N�1 ¼ r

ð0Þ
N�1;N , the self-consistent sequential

procedure for calculating the HRXR angular scan jR
ðidÞ
0 ð�Þj

2

for an ideally planar MLS is obtained.

Furthermore, in order to modify the ideal Fresnel coeffi-

cients r
ð0Þ
n�1;n and t

ð0Þ
n�1;n for a real model (ex) of an MLS with a

surface roughness and interface roughness in a statistical

sense, the Debye–Waller reflection terms and Debye–Waller

transmission terms for surfaces and interfaces will be intro-

duced.

For completeness, we shall now exploit the concept of

continuous electric wavefields and wavefield derivatives along

the normal to each random surface zn�1,n = un�1,n(x, y) that

marks the layer boundary [assuming that each random func-

tion un�1,n(x, y) is smooth and single-valued as well].

Omitting the straightforward calculations, at every point

(x, y, un�1,n) one has the following robust equations:

expðikðn�1Þ
z un�1;nÞ þ rn�1;n expð�ikðn�1Þ

z un�1;nÞ

¼ tn�1;n expðikðnÞz un�1;nÞ; ð6aÞ

ikðn�1Þ
z ½expðikðn�1Þ

z un�1;nÞ � rn�1;n expð�ikðn�1Þ
z un�1;nÞ�

þ expð�ikðn�1Þ
z un�1;nÞð@rn�1;n=@un�1;nÞ

¼ ikðnÞz tn�1;n expðikðnÞz un�1;nÞ

þ expðikðnÞz un�1;nÞð@tn�1;n=@un�1;nÞ: ð6bÞ

The following solutions for the Fresnel coefficients rn�1,n and

tn�1,n

rn�1;n ¼ expð2ikðn�1Þ
z un�1;nÞr

ð0Þ
n�1;n;

tn�1;n ¼ exp½2iðkðn�1Þ
z � kðnÞz Þun�1;n�t

ð0Þ
n�1;n ð7Þ

as functions of the current point (x, y, un�1,n) are easily proven

to satisfy equations (6a) and (6b).

Assuming a function un�1,n(x, y) to be the Gaussian random

variable and its Gaussian distribution as wðun�1;nÞ ¼

ð2��2
n�1;nÞ

�1=2 exp½�ðun�1;nÞ
2=2�2

n�1;n�, one can write down the

Debye–Waller reflection term and the Debye–Waller trans-

mission term as follows:

f
ðrÞn�1;n

n�1;n ¼ hexpð2ikðn�1Þ
z un�1;nÞi ¼ exp½�2ðkðn�1Þ

z Þ
2�2

n�1;n�;

tn�1;n ¼ hexp½2iðkðn�1Þ
z � kðnÞz Þun�1;n�i

¼ expf�½ðkðn�1Þ
z � kðnÞz Þ

2=2��2
n�1;ng; ð8Þ

where �2
n�1;n is the mean-square roughness of the (n � 1, n)th

layer boundary.

It should be noted that the above simplified derivation of

the static exponential factors [equation (8)] yields the same

expressions for the Debye–Waller transmission term as

obtained in the pioneering paper of Nevot & Croce (1980),

whereas the Debye–Waller reflection term in expressions (8)

differs from Nevot & Croce’s reflection term of

expð�2kðn�1Þ
z � kðnÞz �

2
n�1;nÞ. Both the Debye–Waller terms in

equation (8) coincide with the corresponding ones introduced

in the paper by Bushuev & Sutyrin (2000).

A rigorous theoretical treatment of the static exponential

factors is beyond the scope of the present study. However, it is

clearly a subject for future theoretical investigation, which

might be carried out, for instance, in the frame of Green’s

function formalism for wavefields propagating through two

adjacent media separated by a random surface.

Correspondingly, in the case of the (n � 1, n)th layer

interface modified Fresnel coefficients can be introduced,

r̂rn�1;n ¼ f
ðrÞn�1;n

n�1;n r
ð0Þ
n�1;n;

t̂tn�1;n ¼ f
ðtÞn�1;n

n�1;n r
ð0Þ
n�1;n: ð9Þ

Then, repeating the derivation procedure of the recurrent

Parratt relationships [equation (1)], each of which is physically

based on the sequential reflections and/or transmissions of the

plane wavefield due to the nth layer medium, and taking into

account the modified Fresnel coefficients r̂rn�1;n; r̂rn;n�1 and

t̂tn�1;n; t̂tn;n�1, one can obtain the modified Parratt relationships

as [cf. Bushuev & Sutyrin (2000) for details]

Rn�1 ¼
r̂rn�1;n þ ð�r̂rn�1;nr̂rn;n�1 þ t̂tn�1;nt̂tn;n�1ÞRngn

1þ r̂rn�1;nRngn

;

ðn ¼ 1; 2; . . . ;NÞ: ð10Þ

Notice that due to the Debye–Waller factors [equations (8)

and (9)] for the modified Fresnel coefficients the identity

�r̂rn�1;nr̂rn;n�1 þ t̂tn�1;nt̂tn;n�1 ¼ 1 does not hold.

The recurrent relationships [equation (10)] together with

the physical conditions RN = 0 and RN�1 ¼ r̂rn�1;n are a starting

point for calculating HRXR angular scan jR
ðexÞ
0 ð�Þj

2 that

simulate the grazing X-ray specular scattering by a real MLS

within the scope of the statistical MLS model described

above.

For the present study, numerous numerical calculations

have been carried out for two-layer and three-layer structures.
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Using the recurrent relationships [equations (1) and (10)],

Figs. 3(a) and 3(b) show typical examples of the simulated

HRXR angular scans � ln½jR
ðidÞ
0 ð�Þj

2
� and � ln½jR

ðexÞ
0 ð�Þj

2
�,

respectively, for a three-layer structure. Note that the loga-

rithmic scale along the ordinate axes in Figs. 3(a) and 3(b) is

chosen explicitly to reveal peculiarities of the intensities

jR
ðidÞ
0 ð�Þj

2 and jR
ðexÞ
0 ð�Þj

2 outside the total specular reflection

region.

Comparison of Figs. 3(a) and 3(b) clearly displays the

combined influence of a surface roughness and interface

roughness on the simulated HRXR data under consideration.

The smoothing and decreasing effects of the HRXR angular

profile oscillations, due to the damping exponential factors of

the modified reflection Fresnel coefficients [cf. equations (8)],

can clearly be seen.

In a further step, the simulated angular scan jR
ðexÞ
0 ð�Þj

2

depicted on a logarithmic scale in Fig. 3(b) will be used to

obtain a true solution for the three-layered structure and, in

particular, to determine the true MLS structure parameters

including the surface roughness and interface roughness.

3. Inverse problem in the HRXR method. Dynamic
iterative Newton–gradient-direction-type algorithm

To determine the parameters fPg ¼
PN

n¼1 fPng, Pn ¼

ðTðn�1Þ; �ðn�1Þ; �2
n�1;nÞ, that characterize the MLS under

consideration, one has to generate the error-functional mini-

mization procedure,

FfPg ¼ J�1
PJ

j¼1

½jR
ðexÞ
0 ð�jÞj

2
� jR0ð�j; fPgÞj

2
�=jRðexÞ

0 ð�jÞj
2: ð11Þ

In order to minimize the error functional F{P} we convert

the commonly used Newton and gradient-direction-type

algorithms to the modified iterative algorithm, which is purely

a synthesis (not a fusion) of the conventional Newton and

gradient-direction-type algorithms operating dynamically. It is

important that each of them is perfectly valid from the

mathematical viewpoint. Loosely speaking, operating dyna-

mically means that the unique criterion for using either the

iterative Newton algorithm or a gradient-direction-type

algorithm within the k-iteration process is to provide the

minimum value of F{P(k+1)} starting from the value of F{P(k)}

(where k is a successive running number of iterations).

In the case of the iterative algorithm under consideration,

passing from the vector P(k) to the vector P(k+1) within the

k-iteration process can be cast in the form (the vector differ-

ential �P(k)
� P(k+1)

� P(k))

�PðkÞ ¼ �P
ðkÞ
NA \�P

ðkÞ
GA (the notation a \ b denotes

either a or bÞ; ð12aÞ

where

�P
ðkÞ
NA / �ĤH½PðkÞ�A½PðkÞ� (Newton’s algorithm);

�P
ðkÞ
GA / �

�IIA½PðkÞ� (gradient-direction-type algorithm):

ð12bÞ

Here P � fPg is the radius vector within the parameter space;

A(P) is the gradient vector consisting of the first-order partial

derivatives of the error functional F{P}, Ai(P) = @F{P}/@Pi.

ĤHðPÞ is the symmetric Hessian matrix, which is the inverse

matrix to the symmetric matrix of the second-order partial

derivatives of the error functional F{P}, namely

ĤHðPÞ ¼ ĜG
�1
ðPÞ; ĜGijðPÞ ¼ @

2FfPg=@Pi @Pj, and �II is a unit

matrix.

The flow scheme for the iterative algorithm discussed here

looks as follows:

Do[(for a fixed value of n)

– Assign the initial set {P} of the structure parameters as

P
ðstartÞ
i ¼ P

ðtrueÞ
i ð1þ� Random½�1; 1�Þ;

where � is the amplitude (deviation level, � < 1) and the

random function Random[�1, 1] gives uniformly distributed

pseudo-random real numbers in the range �1 to 1. For each

nth cycle the integer iteration number k marking a starting

point of the error-functional minimization procedure is equal

to zero;
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Figure 3
The simulated HRXR angular scans � ln½jR

ðidÞ
0 ð�Þj

2
� and � ln½jR

ðexÞ
0 ð�Þj

2
�

versus the grazing incident angle � calculated for the case of a three-layer
structure: (a) �2

n�1;n ¼ 0, (b) �2
n�1;n 6¼ 0 (n = 1, 2, 3, 4; see text for details).



Do[(for a fixed value of k)

– Calculate the error functional F{P(k)}, the gradient vector

A[P(k)] and the second-order partial-derivatives matrices

ĜG½PðkÞ�, ĤH½PðkÞ� ¼ ĜG
�1
½PðkÞ�;

– Calculate the alternative vector differential of ��P(k) in

parallel using both the Newton and/or gradient-direction-type

formulas (12a) and (12b) to provide the minimum value of the

error functional F{P(k+1)}. Notice that both the (�) signs

involved in the vector differential of ��P(k) for obtaining the

minimum value of the error functional F{P(k+1)} have to be the

same, since according to formulas (12b) the vector differential

�P(k) defines only the preferable alteration direction of the

error functional F{P(k)} at the point P(k) to the point P(k+1) and

nothing more.

– Calculate the error-functional value F{P(k+1)} at the point

P(k+1). These values are then fed back in an iterative fashion to

the next iteration, k! kþ 1;

– Terminate the iterations if the error-functional value

F{P(k+1)} becomes less than 10�9 (the termination value of

10�9 is accepted as the absolute minimum of F{P(true)}).

– Output the final set of {P(true)} that have been sought,

– {1 � k � K, the integer iteration number k runs from 1 up

to the total iteration number K; the number k runs for the

fixed cycle number n}],

– {1 � n � N, the integer cycle number n runs from 1 up to

the total cycle number N}].

The main difference between the iterative algorithm

described here and Levenberg–Marquardt’s algorithm (Eadie

et al., 1971; Gill et al., 1981; see also Sutyrin & Prokhorov,

2006) is that the latter prescribes the combined single algo-

rithm. The Levenberg–Marquardt algorithm unites both the

Newton and gradient-direction algorithms, being in fact the

direct fusion of them. Indeed, according to the Levenberg–

Marquardt method, for each k-iteration process the vector

differential �P(k) is calculated as some linear superposition of

�P
ðkÞ
NA and �P

ðkÞ
GA [cf. equations (12a) and (12b) of the present

iterative algorithm].

Our attention is focused in particular on the fact that some

important constraints are imposed on the alteration magni-

tudes j�P
ðkÞ
i j. Specifically, as found in our case, the peak

change max½j�P
ðkÞ
i j=P

ðkÞ
i � has to be confined either to a

magnitude of the order of 0.05–0.10 or of the order of 0.03 by

implementing either Newton’s algorithm code or the gradient-

direction-type algorithm code, respectively.

Moreover, for the full range of the iteration numbers k none

of the calculated parameters P
ðkÞ
i are allowed to go out of the

range ��P
ðtrueÞ
i around the true values P

ðtrueÞ
i .

Loosely speaking, the evolutionary idea of the iterative

algorithm described here is to fit the structure parameters {P}

by dynamically harmonizing Newton’s algorithm and the

gradient-direction-type algorithm for every iteration number

k. The simple idea of uniting the two algorithms so that they

operate dynamically as one iterative algorithm is invoked in

order to reduce the known problems with the HRXR error-

functional minimization procedure. Among these are the

problem of the functional slipping towards local minima that

give numerous redundant solutions and the problem of

minimization-procedure stagnation. These problems increase

most when the initial structure parameters that launch the

minimization procedure are not close to the true structure

parameters.

The dynamic iterative algorithm code described above was

tested using simulated HRXR scan data jR
ðexÞ
0 ð�Þj

2 for a three-

layer structure without placing any hard limitations on the

initial structure parameters. In the next section, as examples of

tests of the dynamic iterative algorithm, some results of the

numerical run-through are presented. In the case under

consideration the rank of the structure-parameter array {P} is

equal to 10. How well the dynamic iterative algorithm code

worked is controlled by the performance criterion of the

relative number of successful iterative cycles to yield the true

solution {P(true)}, which corresponds to the absolute minimum

of the error functional F{P(true)} = 0 provided that the initial

parameters {P(start)} are randomly defined in a wide range

around the true ones.

4. Numerical run-through. Results and discussion

The test case used the simulated input angular scan data

jR
ðexÞ
0 ð�Þj

2 (cf. Fig. 3b) in order to solve the inverse problem in

the HRXR method for a three-layer structure. The other

numerical details are P(true) = {{0.80, 0.90, 0.75}, {3.0, 4.0, 2.0},

{0.211, 0.2285, 0.256, 0.2795}}, where the normalized and/or

dimensionless true parameters are listed as follows: from left

to right the sequential arrays contain the values of the

complex electric susceptibility (1 � 0.05i){�(4�n)}, the thick-

ness {T(4�n)} for n = 1, 2, 3 and the mean-square roughness

f�2
4�n;5�ng for n = 1, 2, 3, 4, respectively. For the substrate �(4) is

assumed to be equal to 1. The thickness {T(4�n)} for each n is

given in units of 105/2�/2�; the mean-square roughness of

f�2
4�n;5�ng for each n is given in units of 105(�/2�)2. The grazing

incident angle � is measured in units of 0.00039 radian, i.e. �j =

0.000039j, where the integer number j runs from 1 up to J, and

J is the rank of the array {�j} in which the input angular scan

data jR
ðexÞ
0 ð�jÞj

2 are calculated.

In order to examine the convergent features of the dynamic

iterative algorithm code guiding the procedure for deter-

mining the true parameters {P(true)}, the flow scheme discussed

above with the input angular scan data fjR
ðexÞ
0 ð�jÞj

2
g and

diverse initial parameters {P(start)} for each cycle n was

followed iteratively for the deviation levels � = 0.1, 0.2, 0.3

and 0.4. The total cycle number N was chosen to be 10. The

iteration number k runs from 1 up to the total iteration

number K = 220. For reference, the numerical tests were

repeated at least four or five times.

Figs. 4(a)–(d) show the behavior of the calculated plots of

the normalized factor �EEð�Þ ¼ � ln½FfPðkfinal;�Þg=FfPðkstart¼0;�Þg�

versus the cycle number � = n + 1 obtained using the dynamic

Newton–gradient-direction-type iterative algorithm detailed

above, where the integer cycle number n runs from 1 up to 10

and �EEð1Þ � 0. It is found that the relative number of successful

cycles to get the true structure parameters {P(true)} are in the

range 90–40% while the deviation levels � of the initial

Acta Cryst. (2009). A65, 39–45 F. N. Chukhovskii � Dynamic Newton–gradient-direction-type algorithm 43

research papers



structure parameters {P(start)} from {P(true)} vary from 0.1 up to

0.4. Note that values of the error functional F{P(true)} that are

less than 10�9 contribute to the relative number of successful

iteration cycles.

Based on the trends of the F{P} reduction behavior

observed in Figs. 4(a)–(d) one can claim that this iterative

algorithm code, which uses both Newton’s algorithm and a

gradient-direction-type algorithm dynamically, provides a

good fitting procedure for solving the inverse problem in the

HRXR method. The iterative algorithm code presented here

governs the error-functional minimization procedure with a

high frequency of occurrence of the absolute solution even if

the range of the parameters {P(start)} is rather wide around

{P(true)}.

5. Concluding remarks

In this paper, the goal of our study was to justify an imple-

mentation of the iterative algorithm code detailed above for

solving the inverse problem in HRXR. The main feature of the

dynamic iterative algorithm code is that it provides a robust

unambiguous procedure for determining MLS parameters

using HRXR angular scan data and initial MLS parameters

without placing any hard limitations upon their starting values.

In what is referred to as a general structure-parameter-

retrieval problem, the present method is based on a synthesis

of two conventional iterative algorithms, Newton’s algorithm

and a gradient-direction-type algorithm, each of which is

widely exploited for HRXR error-functional minimization.

The calculated examples presented here indicate that, unlike

the iterative methods used before, using the iterative algo-

rithm routinely in a dynamic fashion is reasonable from both

physical and mathematical viewpoints and does not depend on

strict assumptions about the initial MLS parameters.

The question of how the dynamic parameter-retrieval

algorithm works and its application to the extraction of the

macroscopic parameters of an MLS using experimentally

measured angular scan data jR
ðexÞ
0 ð�Þj

2, particularly taking into

account the experimental counting statistics as well, remains

as a good topic for future research.
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Figure 4
Plot of the normalized factor �EEðnÞ ¼ � ln½FfPðkfinal;�Þg=FfPðkstart¼0;�Þg� versus the cycle number � = n + 1. The integer cycle number n runs from 1 up to 10
for the different deviation levels (a) � = 0.1, (b) � = 0.2, (c) � = 0.3, (d) � = 0.4. Note that in the case of � = 1 the iteration number kfinal is equal to kstart =
0 and hence Pðkfinal;1Þ ¼ Pðkstart¼0;1Þ, and �EEð1Þ � 0.



With these remarks, we only claim that the iterative algo-

rithm code based on both Newton’s algorithm and a gradient-

direction-type algorithm operating dynamically is convergent

and works well. Let us emphasize once more that how well it

will work in practice, in particular using experimental scan

data in the HRXR method, remains to be seen and is of

interest for future work.

Valuable discussions with and comments from A. M.

Poliakov and D. P. Pigorev are gratefully acknowledged.
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